Volume Regulation in Epithelia

نویسنده

  • Erik Hviid
چکیده

We review studies on regulatory volume decrease (RVD) and regulatory volume increase (RVI) of major ion and water transporting vertebrate epithelia. The rate of RVD and RVI is faster in cells of high osmotic permeability like amphibian gallbladder and mammalian proximal tubule as compared to amphibian skin and mammalian cortical collecting tubule of low and intermediate osmotic permeability. Crosstalk between entrance and exit mechanisms interferes with volume regulation both at aniso-osmotic and iso-osmotic volume perturbations. It has been proposed that cell volume regulation is an intrinsic function of iso-osmotic fluid transport that depends on Na recirculation. The causative relationship is discussed for a fluid-absorbing and a fluid-secreting epithelium of which the Na recirculation mechanisms have been identified. A large number of transporters and ion channels involved in cell volume regulation are cloned. The volume-regulated anion channel (VRAC) exhibiting specific electrophysiological characteristics seems exclusive to serve cell volume regulation. This is contrary to K channels as well as cotransporters and exchange mechanisms that may serve both transepithelial transport and cell volume regulation. In the same cell, these functions may be maintained by different ion pathways that are separately regulated. RVD is often preceded by increase in cytosolic free Ca, probably via influx through TRP channels, but Ca release from intracellular stores has also been observed. Cell volume regulation is associated with specific ATP release mechanisms and involves tyrosine kinases, mitogen-activated protein kinases, WNKs and Ste20-related kinases that are modulated by osmotic stress and cell volume perturbations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of Murine Airway Surface Liquid Volume by CFTR and Ca2+-activated Cl− Conductances

Two Cl(-) conductances have been described in the apical membrane of both human and murine proximal airway epithelia that are thought to play predominant roles in airway hydration: (1) CFTR, which is cAMP regulated and (2) the Ca(2+)-activated Cl(-) conductance (CaCC) whose molecular identity is uncertain. In addition to second messenger regulation, cross talk between these two channels may als...

متن کامل

Cell volume regulation in epithelial physiology and cancer

The physiological function of epithelia is transport of ions, nutrients, and fluid either in secretory or absorptive direction. All of these processes are closely related to cell volume changes, which are thus an integrated part of epithelial function. Transepithelial transport and cell volume regulation both rely on the spatially and temporally coordinated function of ion channels and transpor...

متن کامل

Modulation of cellular transport characteristics of the human lung alveolar epithelia

Among the drug delivery and targeting (DDT) routes, lung alveolar epithelium has been given enormous attentions in terms of the delivery of a wide range of macromolecules such as gene- or protein-based nanopharmaceuticals. However, little is known about cellular modulation of lung transport characteristics by endogenous and/or exogenous agents. Thus, in the current study, impact of dexamethason...

متن کامل

Soluble Mediators, Not Cilia, Determine Airway Surface Liquid Volume in Normal and Cystic Fibrosis Superficial Airway Epithelia

A key aspect of the lung's innate defense system is the ability of the superficial epithelium to regulate airway surface liquid (ASL) volume to maintain a 7-mum periciliary liquid layer (PCL), which is required for cilia to beat and produce mucus flow. The mechanisms whereby airway epithelia regulate ASL height to >or=7 microm are poorly understood. Using bumetanide as an inhibitor of Cl- secre...

متن کامل

Response of Ultimobranchial and Parathyroid Glands of the Indian Skipper Frog, Euphlyctis cyanophlyctis to Cadmium Toxicity

Background: Cadmium toxicity has been shown in aquatic animals but the effect on frog’s endocrine glands is not known. We investigated the effects of cadmium on ultimobranchial and parathyroid glands of Indian skipper frog, Euphlyctis cyanophlyctis. Methods: Frogs were exposed to cadmium chloride for short and long terms and sacrificed after 24, 48, 72 or 96 h (short-term) and after 5, 10, 1...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015